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Goal:

● Provide foundation and  relevant self & semi-supervised learning 
methods for ASR

● Provide learning from executing ‘Supervised to Semi-Supervised’ 
Case Study



Part-II

Tutorial Unsupervised ASR
Venkateshan Kannan



Introduction: Nearly unsupervised ASR

● MostASR systems are constructed by training deep  neural networks on large-
scale labeled data using supervised learning

● Can we train ASR models using little to no parallel training data? 
● Annotating audio data is expensive;unannotated audio data  is relatively easy to 

collect. 
● Especially important in low or zero resource setting (transcribed speech data is 

not available for the vast majority of the nearly 7,000 languages of the world )
● Build on the success of unsupervised approaches in machine translation. 



Introduction: Nearly unsupervised ASR

APPROACHES:

● Use iterative training and fine-tuning. 
● Use self-training with voice data that learns to identify context (type of 

unsupervised learning) 
● Learn targeted representations
● Understand  token/phoneme distribution properties



Papers covered in the tutorial 

Baevski et al, Unsupervised Speech Recognition (2021), arXiv:2105.11084

Ren et al, Almost Unsupervised Text to Speech and Automatic Speech 
Recognition, 2019 (ICML) [arXiv:1905.06791] 

Chih-Kuan Yeh et al, Unsupervised Speech Recognition via Segmental Empirical 
Output Distribution Matching (ICLR 2019) arXiv:1812.09323

https://arxiv.org/abs/2105.11084
https://arxiv.org/abs/1905.06791
https://arxiv.org/search/eess?searchtype=author&query=Yeh%2C+C
https://arxiv.org/abs/1812.09323


PAPER 1:  Unsupervised Speech Recognition (2021)

● Introduce a model called Wav-2-Vec Unsupervised
● Builds on top of Wav-2-Vec 2.0 framework (also by the same group as 

Facebook) 
● Use the context representation learned from Wav-2-Vec
● Wav-2-Vec itself was very successful at performing well despite using only  a 

limited amount of parallel training data



Overview of Wav-2-Vec 2.0 

● Using representation of audio from wav-2-vec

Baevski et al, wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations



Wav2Vec 2.0 Architecture 

Consists of

1. Feature encoder :

Raw speech audio frames are provided as input and that is mapped to latent representation 

Several blocks containing a temporal convolution followed by a GELU (Gaussian-error linear unit) activation function. 

1. Context Network:

output of the feature encoder is fed to a context network which follows the Transformer architecture giving context 
representation 

1. Quantization Module: discretize the output of the feature encoder  to a finite set of speech representations (called 
codebook) via product quantization. A set of G codebooks that are concatenated together. (Gumbel softmax is used 
to select the codebook from logits mapped from the latent representation)



Wav2Vec 2.0 Architecture 

Quantization Module: discretize the output of the feature encoder  to a finite set of speech 
representations (called codebook) via product quantization, i.e choosing quantized 
representations from multiple codebooks and concatenating them.

Given G codebooks,with V entries choose one entry from each and concatenate t         
and apply a linear transformation.

The Gumbel softmax enables choosing discrete codebook entries in a fully differentiable way.

The feature encoder output  is mapped to                       logits and the probabilities for 
choosing the v-th codebook entry for group g are



Wav2Vec Training

● Pre-trained through masking (self-learning) similar to BERT.
● Masking is applied to the output of the encoder at certain time-steps before 

input to the context representation layer. Instead a (trainable) feature vector 
is passed across all these masked time-steps. 

● Note that the masking does not extend to the input to the quantization step. 
● Contrastive loss is used to identify the true quantized speech representation 

q_t given the context vector over a masked time step. 



Wav2Vec Training

● There is a diversity loss added for uniform use of codebook 
representations. 



Wav2Vec Unsupervised

Baevski et al, Unsupervised Speech Recognition (2021)



Wav2-Vec Unsupervised

❖ Speech representation obtained from Wav2Vec 2.0. 
❖ Speech is segmented so that each segment can be mapped to a phoneme. 
❖ Goal is to map audio representations to phonemes under no supervision. 
❖ Uppermost block of context transformer is unsuitable: features are trained to 

predict masked representations spanning 25ms, considerably shorter than the 
typical duration of a phoneme.



Wav2-Vec Unsupervised

Train phoneme classifiers on top of the frozen representations of each of the 24 
blocks of the English wav2vec 2.0



Wav2-Vec Unsupervised

❖ Next, the complete speech representations of the training (unpaired) audio 
data are clustered using k-means with k=128. 

❖ Each speech representation c_t is labeled by the cluster ID it belongs to.
❖ 512-dimensional PCA is performed on all speech representation and for a 

given segment (i.e, cluster id), the PCA components are mean-pooled. 
❖ Segment representation 



Wav2Vec-U (Training)

● Text data is also phonemized: the sequence of words is mapped to a 
sequence of phonemes 

● The actual training happens through a generative adversarial model (GAN)
● Generator produces sequence of phonemes from the segments that are given 

as input 
● Discriminator determines whether the sequence of phonemes is generated 

from actual textual data (or NOT).



Generative Adversarial networks 

❖ In the maximization stage, the discriminator D is
trained to recognize legitimate phonemized text
(output close to 1) and simultaneously reject the
generated sequence (output close to 0).

❖ In the minimization stage, the generator G is 
trained to “fool” the discriminator to maximize the 
scores for the sequences generated by G(z). 

❖ The broader idea is to train the generator to 
produce phoneme sequence that resembles true 
sequences. 

Baevski et al, Unsupervised Speech Recognition (2021)



Wav2Vev-U (Training)

❖ There are also other losses: gradient norm of discriminator (for stability), phoneme 

segment sequence smoothness and phoneme diversity. 

❖ The generator is a single convolution with kernel size 4.

❖ The discriminator is composed of three convolution blocks with a hidden size of 

384 and a kernel size of 6, resulting in a receptive field size of 16 segments.



Wav2Vev-U (Self-training)

❖ Semi-supervised learning is used to progressively refine the quality of transcriptions.

❖ Two iterations: 

➢ First, pseudo-label the training data with the unsupervised GAN model and train an HMM on the 

pseudo-labels

➢ Second, relabel the training data with the HMM (in inference mode) and then fine-tune the original 

wav2vec 2.0 model using the HMM pseudo-labels with a CTC loss. 

❖ Note that HMM models use phonemes as output, while wav2vec 2.0 use letter. Both are decoded into 

words.



Results

Baevski et al, Unsupervised Speech Recognition (2021)



Benchmark data

Librispeech: 960h of transcribed audio. Here only the audio is used and not the 
transcriptions. Libri-Light has about 54h of audio data. 

TIMIT: This dataset contains about five hours of audio recordings with time-
aligned phonetic transcripts. To compare to prior work, two setups are considered:

● the matched setting uses text and speech from the same set of utterances to 
train the model (note that this is still unsupervised) 

● unmatched setting ensures that the unlabeled text data does not contain the 
transcriptions of the audio data. 



Results



Almost Unsupervised Text to Speech and Automatic Speech Recognition

Ren et al, 2019 (ICML) [arXiv:1905.06791] 

Four components:

❖ Denoising auto-encoder, which reconstructs speech and text sequences 
respectively

❖ Dual transformation, where the TTS model transforms the text y into speech 
and   the ASR model leverages the transformed pair 

for training

❖ Bidirectional sequence modeling,  which  addresses  error  propagation  
especially in long speech and text sequence when training with few paired data

❖ Unified model structure, which combines all the above components for TTS and 
ASR based on Transformer model.

https://arxiv.org/abs/1905.06791


Denoising auto-encoders

:Speech encoder & decoder 
parameters 

: Text encoder &  decoder parameters. 

:corruption of the speech &  text 
sequences respectively



Corruption operation

Corruption:

❖ randomly masks some elements with zero  vectors, or 
❖ swaps the elements in a certain window of the speech and text sequences



Loss Functions

X would be the logarithm of Mel filterbank energies of the Short Term Fourier 
Transform (STFT) of speech. 



Overall Structure 



Dual Transformation

Transform the speech sequence x into text sequence       using the ASR model an train TTS on 

Likewise, train the ASR model on the transformed pair generated by the TTS model.

where and denote the text and speech  

sequence transformed from speech x and text y respectively. 



Bidirectional sequence modeling

● Error propagation in sequence to sequence learning during inference. Error in 
the earlier part will be propagated to future tokens.

● Solve this by generating sequences in both directions. 
● Reformulate denoising auto-encoder and dual transformation 



Bidirectional DT



Bidirectional DT

Bidirectional sequence modeling based on denoising auto-encoder and dual transformation 
shares the models between left-to-right and right-to-left generations, i.e., they use the same 
set of parameter.s 

This reduces the model parameter.



Bidirectional DT

TO give sense of which direction the sequence will be generated:

❖ two learnable embedding vectors as passed as two start elements for the decoder, 
representing the training and inference directions, one from left to right and the other 
from right to left.

❖ There are therefore four start embeddings in total, two for speech generation and the 
other two for text generation



Supervised Training



Total Loss



Model Structure

Encoder and decoder structure are both transformers. 



Model Structure



Input/Output Modules

❖ Speech Input module : pre-net  2-layer dense-
connected, hidden size of 256, and the output 
dimension equals to the  hidden size of 
Transformer. 

❖ Speech Output Module: Two components: 
➢ stop linear layer - predict if decoding should 

stop 
➢ mel linear layer +post-net to generate the 

mel-spectrogram with 80dim
❖ Text Input module: phoneme embedding. 
❖ Text Output Module: share phoneme embedding 

with text linear layer. 



Training 

❖ LJSpeech: Paired 13,100 English audio clips and transcripts (24 hours). 

❖ Unpaired data:

➢ 12500 samples (training)  

➢ 300 samples (validation) set 

➢ 300 ( test)

❖ 200 samples paired.

❖ Convert text into phonemes before feeding to model

❖ Upsample paired data in training 

❖ Corruption operation is through masking. 



Results

Pair-200: Using only paired data of the 200 samples 

Supervised: Using all data with transcripts

GT(Griffin-Lim): Convert GT audio to mel-spectrogram and transform mel-spectrogram back to 

audio using the Griffin-Lin method.  As all audio in this experiment uses GL, this represents the 
upper bound. 

PER: Phoneme Error Rate
MOS: Mean Opinion Score



Results (Ablation) 

Adding one component after another. Dual transformation 
brings about the greatest change but there is a significant 
improvement with the bidirectional sequence training. 

PER: Phoneme Error Rate
MOS: Mean Opinion Score



Results (Ablation) 

Increasing the amount of paired data. 

Note how dramatically the PER reduces as we increase paired 
data from 100 to 200. 



Paper 3: Segmental Empirical Output Distribution Matching

Chih-Kuan Yeh et al, 2019

● A segment of consecutive input samples (frames) that are associated
to the same phoneme label.

● Lengths and the boundaries of these segments are usually unknown a priori.
Key idea:

● Distribution of the predicted outputs across consecutive segments shall
match the phoneme language model and

● Predicted outputs within each segment should be equal to each other as they belong to the same 
phoneme.



Segmental Empirical Output Distribution Matching

Input x_t (m-dimensional acoustic vector) and frame-wise output y_t (phoneme label) amd 
the final phoneme sequence  



Speech Segments

Frame-wise phoneme classifier: 

Unsupervised algorithm to learn the classification model with a  given set of 
segmentation boundaries

Assuming there are K segments in the training data, 
sampled one per segment from 



Segmental Empirical Output Distribution Matching

N-gram language model: 

Subsequence that ends in t_i :  

Cost function:

Where 

Cost function takes a cross entropy form which attains a minimum when the two distributions are equal, i.e 
Minimization would narrow the difference between the empirical output inter-segment and that of the N-gram phomene 
language model while  making no distinction between the timesteps within a segment. 



Segmental Empirical Output Distribution Matching

Intra-segment distribution matching
cost:  

for frame-wise smoothness.

Overall cost (Segmental Empirical-ODM)



Improving segment Boundary 

Recognize that 

Given an output sequence          we can determine b_t?

Having determined    one can compute  the MAP estimate of y



Improving segment Boundary 

Approximate for j=0,1

The conditional probability is obtained from a gated RNN auto-encoder described 
in Wang et al (arXiv:1703.07588, 2017)



Improving Segment Boundary 

Once the MAP estimate of $y$ is obtained, they compute b_t. 

The overall algorithm 



Using HMM in training 

❖ To further improve performance, HMM model is used.
❖ However instead of using paired data (x,y), they use the unsupervised 

method to generate labels and then bootstrap the HMM-training with 
(x,\hat{y}). 



Training Details

● 39 dim input feature vectors including 13 MFCC +  double_difference 
obtained from 25 ms Hamming window at 10 ms interval hop. 

● p θ (y t |x t ) is modeled by a fully connected neural network with one hidden 
layer of 512 ReLU units. 

● The input to the neural network is a concatenation of frames within a context 
window of size 11.



Evaluation Details

PER: Phoneme Error Rate, FER: Frame error rate

TIMIT data: training and validation sets of 3696 and 400 utterances

Two settings:

● matching language model: 3696 utterances to train our language modelp_{LM} (z)
● Non-matching language model: training (3000) and validation (1096) utterances. 

p_{LM} (z) is trained on 1096 while input the unsuperivsed model is 3000 set. 

Further they consider:

(a) unsupervised with oracle phoneme boundary and

(b)  fully unsupervised.



RESULTS



RESULTS (Unsupervised Phoneme Segmentation)
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